CONCEPTUAL POSSIDATES Twelfth Edition

written and illustrated by **Paul G. Hewitt** City College of San Francisco

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Publisher: Jim Smith	Design Manager: Derek Bacchus
Project Manager: Chandrika Madhavan	Text Design: Tamara Newnam
Assistant Editor: Kyle Doctor	Cover Designer: Tamara Newnam
Marketing Manager: Will Smith	Illustrations: Rolin Graphics, Inc.
Program Manager: Mary O'Connell	Photo Researcher: Stephen Merland, PreMediaGlobal
Media Producer: Kate Brayton	Image Lead: Maya Melenchuk
Production Service and Composition: Cenveo Publisher	Manufacturing Buyer: Jeffrey Sargent
Services	Printer and Binder: Courier/Kendallville
Project Manager, Production Service: Cindy Johnson	Cover Printer: Lehigh/Phoenix
Copyeditor: Carol Reitz	Cover Photo Credit: Top Seller/Shutterstock

۲

Credits and acknowledgments for materials borrowed from other sources and reproduced, with permission, in this textbook appear on page C-1.

Copyright ©2015, 2010, 2006 Pearson Education, Inc. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduc - tion, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, 1900 E. Lake Ave., Glenview, IL 60025. For information regarding permissions, call (847) 486-2635.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

MasteringPhysics[®] is a trademark, in the U.S. and/or other countries, of Pearson Education, Inc. or its affiliates.

Library of Congress Cataloging-in-Publication Data

Hewitt, Paul G., author.

۲

Conceptual physics / written and illustrated by Paul G. Hewitt, City College of San Francisco. -- Twelfth edition. pages cm Includes index.

ISBN 978-0-321-90910-7 1. Physics--Textbooks. I. Title. QC23.2.H488 2015 530--dc23

2013035027

ISBN 10: **0-321-90910-0**; ISBN 13: **978-0-321-90910-7** (Student edition) ISBN 10: **0-321-93578-0**; ISBN 13: **978-0-321-90979-4** (Books a la Carte Edition) ISBN 10: **0-133-49849-2**; ISBN 13: **978-0-133-49849-3** (NASTA)

PEARSON

www.pearsonhighered.com

10/18/13 5:52 PM

To my grandchildren, Manuel, Alexander, Megan, Grace, and Emily and to all students who struggle to learn physics

۲

۲

Contents in Brief

۲

	To the Student	xvi
	To the Instructor	xvii
1	About Science	2
	TONE	
Me	chanics	19
2	Newton's First Law of Motion–Inertia	20
3	Linear Motion	39
4	Newton's Second Law of Motion	57
5	Newton's Third Law of Motion	74
	Momentum	90
	Energy	109
8		132
9	5	160
10	Projectile and Satellite Motion	182
PAR	т тwo	
	perties of Matter	207
11	The Atomic Nature of Matter	208
12	Solids	226
13	Liquids	244
14	Gases	264
	T THREE	
He	at	283
15	Temperature, Heat, and Expansion	284
	Heat Transfer	302
17	Change of Phase	320
	Thermodynamics	336
PAR	T FOUR	
Sou		355
19	Vibrations and Waves	356
	Sound	374
21	Musical Sounds	391

PART FIVE		
Electricity	and Magnetism	405
22 Electrosta	atics	406
23 Electric C	Current	430
24 Magnetis	m	452
25 Electrom	agnetic Induction	469
PART SIX		405
Light		485
26 Propertie	s of Light	486
27 Color		504
	n and Refraction	519
29 Light Wa		544
30 Light Em		562 582
31 Light Qu	anta	582
PART SEVEN	1 NT 1 D1 1	(01
Atomic and	d Nuclear Physics	601
	n and the Quantum	602
	nic Nucleus and Radioactivity	615
34 Nuclear I	Fission and Fusion	637
PART EIGHT		
Relativity		657
35 Special T	heory of Relativity	658
36 General 7	Theory of Relativity	686
APPENDIX A	On Measurement	
	and Unit Conversions	703
APPENDIX B	More About Motion	709
APPENDIX C	Graphing	713
APPENDIX D	More About Vectors	717
APPENDIX E	Exponential Growth	
	and Doubling Time	721
ODD-NUM	MBERED ANSWERS	S-1
GLOSSAR	tΥ.	G-1
CREDITS		C-1
INDEX		I-1

۲

Contents in Detail

۲

1	Ab	out Science	2
	1.1	Scientific Measurements	3
		How Eratosthenes Measured the Size of Earth	3
		Size of the Moon	4
		Distance to the Moon	5
		Distance to the Sun	6
		Size of the Sun	7
		Mathematics—The Language of Science	8
	1.2	Scientific Methods	8
		The Scientific Attitude	8
	1.3	Science, Art, and Religion	12
		PSEUDOSCIENCE	13
	1.4	Science and Technology	14
		RISK ASSESSMENT	14
	1.5	Physics—The Basic Science	15
	1.6	In Perspective	16
PA	RT C	DNE	
Mechanics 19			19

2 Newton's First Law

of Motion–Inertia		
2.1	Aristotle on Motion	21
	Copernicus and the Moving Earth	22
	ARISTOTLE (384–322 bc)	23
2.2	Galileo's Experiments	23
	Leaning Tower	23
	Inclined Planes	23
	GALILEO GALILEI (1564–1642)	24
2.3	Newton's First Law of Motion	26
	PERSONAL ESSAy	27
2.4	Net Force and Vectors	28
	Force Vectors	29
2.5	The Equilibrium Rule	30
	PRACTICING PHYSICS	31
2.6	Support Force	32
2.7	Equilibrium of Moving Things	32
2.8	The Moving Earth	33

3	Linear Motion		
	3.1	Motion Is Relative	40
	3.2	Speed	41
		Instantaneous Speed	41
		Average Speed	41
	3.3	Velocity	42
		Constant Velocity	43
		Changing Velocity	43
	3.4	Acceleration	43
		Acceleration on Galileo's Inclined Planes	45
	3.5	Free Fall	46
		How Fast	46
		How Far	48
		HANG TIME	50
		How Quickly "How Fast" Changes	50
	3.6	Velocity Vectors	51
4	Ne	ewton's Second Law	
	of	Motion	57
	4.1	Force Causes Acceleration	58
	12	Friction	59

4.1	Force Causes Acceleration	58
4.2	Friction	59
4.3	Mass and Weight	61
	Mass Resists Acceleration	63
4.4	Newton's Second Law of Motion	63
4.5	When Acceleration Is g—Free Fall	64
4.6	When Acceleration Is Less Than g—Nonfree Fall	65
Ne	wton's Third Law	
of	Motion	74

5.1	Forces and Interactions	75
5.2	Newton's Third Law of Motion	76
	Defining Your System	77
5.3	Action and Reaction on Different	
	Masses	79
	PRACTICING PHYSICS: TUG-OF-WAR	81
5.4	Vectors and the Third Law	82
5.5	Summary of Newton's Three Laws	85

vii

۲

۲

CONTENTS viii

Momentum

6	5.1	Momentum	91
6	. 2	Impulse	92
6	6.3	Impulse Changes Momentum	93
		Case 1: Increasing Momentum	93
		Case 2: Decreasing Momentum Over	
		a Long Time	94
		Case 3: Decreasing Momentum Over	
		a Short Time	94
6	.4	Bouncing	96
6	5.5	Conservation of Momentum	97
		CONSERVATION LAWS	98
6	6.6	Collisions	99
6	6.7	More Complicated Collisions	102

7 Energy

7.	1	Work	110
		Power	112
		Mechanical Energy	113
7.	2	Potential Energy	113
7.	3	Kinetic Energy	114
7.	4	Work–Energy Theorem	115
7.	5	Conservation of Energy	117
		ENERGY AND TECHNOLOGY	118
		CIRCUS PHy SICS	119
		Recycled Energy	119
7.	6	Machines	120
7.	7	Efficiency	121
7.	8	Sources of Energy	123
		JUNK SCIENCE	125
F	Roi	tational Motion	132
8.	.1	Circular Motion	133
		WHEELS ON RAILROAD TRAINS	135
8.	2	Rotational Inertia	136
8.	3	Torque	139
8.	4	Center of Mass and Center of Gravity	140
		Locating the Center of Gravity	142
		Stability	143
8.	5	Centripetal Force	145
		PRACTICING PHYSICS:	
		WATER-BUCKET SWING	146
8.	6	Centrifugal Force	147
		Constituted Francis a Detailing	
		Centrifugal Force in a Rotating	
		Reference Frame	147
		Reference Frame Simulated Gravity	148
8.	.7	Reference Frame	

9	Gra	avity	160	
	9.1	The Universal Law of Gravity	161	
	9.2	The Universal Gravitational		
		Constant, G	163	
	9.3	Gravity and Distance:		
		The Inverse-Square Law	164	
	9.4	Weight and Weightlessness	166	
	9.5	Ocean Tides	167	
		Tides in the Earth and Atmosphere	170	
		Tidal Bulges on the Moon	170	
	9.6	Gravitational Fields	170	
		Gravitational Field Inside a Planet	171	
		Einstein's Theory of Gravitation	173	
	9.7	Black Holes	174	
	9.8	Universal Gravitation	175	
10	Pro	jectile and		
	Sat	ellite Motion	182	
	10.1	Projectile Motion	183	
		Projectiles Launched Horizontally	184	
		Projectiles Launched at an Angle	186	
		PRACTICING PHYSICS: HANDS-ON		
		DANGLING BEADS	187	
		HANG TIME REVISITED	190	
	10.2	Fast-Moving Projectiles—Satellites	190	
	10.3	Circular Satellite Orbits	192	
	10.4	Elliptical Orbits	194	
		WORLD MONITORING		
		By SATELLITE	195	
	10.5	Kepler's Laws of Planetary Motion	196	
		FINDING yOUR WAy	197	
	10.6	Energy Conservation and		
		Satellite Motion	197	
	10.7	Escape Speed	198	
PAF	PART TWO			
Pro	Properties of Matter 207			

11 The Atomic Nature of Matter 208

11.1 The Atomic Hypothesis	209
FALLING ALICE	210
11.2 Characteristics of Atoms	210
11.3 Atomic Imagery	212
11.4 Atomic Structure	213
The Elements	214
11.5 The Periodic Table of the Elements	215
Relative Sizes of Atoms	215

CONTENTS ix

11.6	Isotopes	218
11.7	Compounds and Mixtures	219
11.8	Molecules	220
11.9	Antimatter	221
	Dark Matter	222
12 Sol	ids	226

001	140	220
12.1	Crystal Structure	227
	CRy STAL POWER	229
12.2	Density	229
12.3	Elasticity	230
12.4	Tension and Compression	232
	PRACTICING PHYSICS:	
	STICK STRENGTH	233
12.5	Arches	234
	ADDITIVE MANUFACTURING	
	OR 3-D PRINTING	235
12.6	Scaling	236

13 Liquids

13.1	Pressure	245
13.2	Pressure in a Liquid	246
	Buoyancy	249
13.4	Archimedes' Principle	250
	What Makes an Object Sink or Float?	251
	Flotation	253
	FLOATING MOUNTAINS	254
13.7	Pascal's Principle	255
	Surface Tension	257
13.9	Capillarity	258
Gas	ses	264

14 Gases

14.1	The Atmosphere	265
14.2	Atmospheric Pressure	266
	The Barometer	268
14.3	Boyle's Law	270
14.4	Buoyancy of Air	271
14.5	Bernoulli's Principle	272
	Applications of Bernoulli's Principle	274
	PRACTICING PHYSICS	275
14.6	Plasma	276
	Plasma in the Everyday World	276
	Plasma Power	277

ΡΔ	RT	TI	н.	R	F.	Ε.

Heat	283

15 Temperature, Heat, and Expansion

15.1	Temperature	285
	Heat	287
	Measuring Heat	289
15.3	Specific Heat Capcity	289
15.4	The High Specific Heat	
	Capacity of Water	290
15.5	Thermal Expansion	291
	Expansion of Water	293
	LIFE AT THE Ex TREMES	295

Heat Transfer

	16.1	Conduction	303
	16.2	Convection	304
		PRACTICING PHYSICS	307
	16.3	Radiation	307
		Emission of Radiant Energy	308
		Absorption of Radiant Energy	309
		Reflection of Radiant Energy	310
		Cooling at Night by Radiation	310
	16.4	Newton's Law of Cooling	311
	16.5	The Greenhouse Effect	312
	16.6	Climate Change	313
	16.7	Solar Power	314
		PRACTICING PHYSICS	315
	16.8	Controlling Heat Transfer	315
•	Ch	ange of Phase	320
	17.1	Phases of Matter	321

17.	1 Phases of Matter	321
17.	2 Evaporation	321
17.	3 Condensation	323
	Condensation in the Atmosphere	324
	Fog and Clouds	325
17.	4 Boiling	325
	Geysers	326
	Boiling Is a Cooling Process	326
	Boiling and Freezing at the Same Time	327
17.	5 Melting and Freezing	327
	Regelation	328
17.	6 Energy and Changes of Phase	328
	PRACTICING PHYSICS	332

CONTENTS х

Thermodynamics

18.1	Thermodynamics	337
18.2	Absolute Zero	337
	Internal Energy	339
18.3	First Law of Thermodynamics	339
18.4	Adiabatic Processes	341
18.5	Meteorology and the First Law	341
18.6	Second Law of Thermodynamics	344
	Heat Engines	344
	THERMODy NAMICS	
	DRAMATIZED!	346
18.7	Energy Tends to Disperse	347
18.8	Entropy	349

PART FOUR

Sound	355
19 Vibrations and Waves	356

Vibrations and Waves

19.1	Good Vibrations	357
	Vibration of a Pendulum	358
19.2	Wave Description	358
19.3	Wave Motion	360
	PRACTICING PHYSICS	361
	Transverse Waves	361
	Longitudinal Waves	361
19.4	Wave Speed	362
19.5	Wave Interference	363
	Standing Waves	364
19.6	Doppler Effect	365
19.7	Bow Waves	367
19.8	Shock Waves	367

Sound

20.1	Nature of Sound	375
	Origin of Sound	375
	Media That Transmit Sound	376
20.2	Sound in Air	376
	LOUDSPEAKER	378
	Speed of Sound in Air	378
	PRACTICING PHYSICS	379
	Energy in Sound Waves	379
20.3	Reflection of Sound	379
20.4	Refraction of Sound	380
20.5	Forced Vibrations	382
	Natural Frequency	382
20.6	Resonance	382

20.7	Interference	384
20.8	Beats	385
	RADIO BROADCASTS	386

Musical Sounds

21.1	Noise and Music	392
21.2	Pitch	393
21.3	Sound Intensity and Loudness	394
21.4	Quality	395
21.5	Musical Instruments	396
21.6	Fourier Analysis	397
21.7	From Analog to Digital	399

PART FIVE

Electricity and Magnetism 405

22	Ele	ctrostatics	406
	22.1	Electricity	407
		Electrical Forces	408
	22.2	Electric Charges	408
	22.3	Conservation of Charge	409
		ELECTRONICS TECHNOLOGy	
		AND SPARKS	410
	22.4	Coulomb's Law	411
	22.5	Conductors and Insulators	412
		Semiconductors	412
		Superconductors	413
	22.6	Charging	413
		Charging by Friction and Contact	413
		Charging by Induction	414
		Charge Polarization	416
	22.8	Electric Field	417
		MICROWAVE OVEN	418
		Electric Shielding	419
	22.9	Electric Potential	421
		Electric Energy Storage	423
		Van de Graaff Generator	424
23	Ele	ctric Current	430
	23.1	Flow of Charge and Electric Current	431
	23.2	Voltage Sources	432
	23.3	Electrical Resistance	433
	23.4	Ohm's Law	434
		Ohm's Law and Electric Shock	435
	23.5	Direct Current and Alternating	
		Current	437
		Converting AC to DC	437

CONTENTS xi

23.6	Speed and Source of Electrons	
	in a Circuit	438
23.7	Electric Power	440
23.8	Lamps	441
23.9	Electric Circuits	441
	Series Circuits	442
	FUEL CELLS	442
	Parallel Circuits	443
	Parallel Circuits and Overloading	445
	Safety Fuses	445
Ma	gnetism	452

24 Magnetism

	24.1	Magnetism	453
	24.2	Magnetic Poles	454
	24.3	Magnetic Fields	455
	24.4	Magnetic Domains	456
	24.5	Electric Currents and Magnetic Fields	458
		PRACTICING PHYSICS	458
	24.6	Electromagnets	459
		Superconducting Electromagnets	460
	24.7	Magnetic Forces	460
		On Moving Charged Particles	460
		On Current-Carrying Wires	460
		Electric Meters	461
		Electric Motors	462
	24.8	Earth's Magnetic Field	462
		Cosmic Rays	464
	24.9	Biomagnetism	465
		MRI: MAGNETIC RESONANCE	
		IMAGING	465
25	Ele	ctromagnetic Induction	469
	25.1	Electromagnetic Induction	470
	05.0	Faraday's Law	472

25.1	Electromagnetic Induction	4/0
25.2	Faraday's Law	472
25.3	Generators and Alternating Current	473
25.4	Power Production	474
	Turbogenerator Power	474
	MHD Power	475
25.5	Transformers	475
25.6	Self-Induction	478
25.7	Power Transmission	479
25.8	Field Induction	479

PART	SIX
Ligh	t

26 Properties of Light **26.1** Electromagnetic Waves **26.2** Electromagnetic Wave Velocity **26.3** The Electromagnetic Spectrum

	20.3	The Electromagnetic Spectrum	409
		FRACTAL ANTENNAS	490
	26.4	Transparent Materials	491
	26.5	Opaque Materials	493
		Shadows	494
	26.6	Seeing Light—The Eye	496
27	Co	lor	504
	27.1	Color in Our World	505
	27.2	Selective Reflection	505
	27.3	Selective Transmission	507
	27.4	Mixing Colored Lights	507
		Primary Colors	508
		Complementary Colors	509
	27.5	Mixing Colored Pigments	509
		1 01 T D1	511

27.5	Mixing Colored Pigments	509
27.6	Why the Sky Is Blue	511
27.7	Why Sunsets Are Red	512
	PRACTICING PHYSICS	513
27.8	Why Clouds Are White	514
27.9	Why Water Is Greenish Blue	514

Reflection and Refraction

28.1	Reflection	520
	Principle of Least Time	520
28.2	1 0	521
	Plane Mirrors	522
	Diffuse Reflection	523
28.3	Refraction	524
	Index of Refraction	526
	Mirage	526
28.4	Cause of Refraction	527
28.5	Dispersion and Rainbows	529
28.6	Total Internal Reflection	531
28.7	Lenses	533
	Image Formation by a Lens	534
	PRACTICING PHYSICS	535
28.8	Lens Defects	537
Lig	ht Waves	544
29.1	Huygens' Principle	545
29.2	Diffraction	547
	28.2 28.3 28.4 28.5 28.6 28.7 28.8 Lig 29.1	 Diffuse Reflection 28.3 Refraction Index of Refraction Mirage 28.4 Cause of Refraction 28.5 Dispersion and Rainbows 28.6 Total Internal Reflection 28.7 Lenses Image Formation by a Lens PRACTICING PHYSICS 28.8 Lens Defects Light Waves 29.1 Huygens' Principle

 (\bullet)

XII CONTENTS

29.3	Superposition and Interference	549
29.4	Thin-Film Interference	552
	Single-Color Thin-Film Interference	552
	Interference Colors	553
	PRACTICING PHYSICS	554
29.5	Polarization	555
	Three-Dimensional Viewing	557
29.6	Holography	559

Light Emission

30.1	Light Emission	563
30.2	Excitation	564
30.3	Emission Spectra	566
30.4	Incandescence	567
30.5	Absorption Spectra	569
30.6	Fluorescence	570
30.7	Phosphorescence	571
30.8	Lamps	572
	Incandescent Lamp	572
	Fluorescent Lamp	572
	Compact Fluorescent Lamp	573
	Light-Emitting Diode	573
30.9	Lasers	574

Light Quanta

31.1	Birth of the Quantum Theory	583
31.2	Quantization and Planck's Constant	584
31.3	Photoelectric Effect	585
31.4	Wave–Particle Duality	588
31.5	Double-Slit Experiment	588
31.6	Particles as Waves: Electron	
	Diffraction	590
31.7	Uncertainty Principle	592
31.8	Complementarity	595
	PREDICTABILITY AND CHAOS	596

PART SEVEN

Atomic and Nuclear Physics

The Atom and the Quantum 602

32.1	Discovery of the Atomic Nucleus	603
32.2	Discovery of the Electron	604
32.3	Atomic Spectra: Clues to	
	Atomic Structure	606
32.4	Bohr Model of the Atom	607

	32.5	Explanation of Quantized Energy	
		Levels: Electron Waves	608
	32.6	Quantum Mechanics	610
	32.7	Correspondence Principle	611
		HIGGS BOSON	612
33	The	e Atomic Nucleus	
	and	l Radioactivity	615
	33.1	x -rays and Radioactivity	616
	33.2	Alpha, Beta, and Gamma Rays	617

33.2	Alpha, Beta, and Gamma Rays	617
33.3	Environmental Radiation	619
	Units of Radiation	619
	Doses of Radiation	620
	Radioactive Tracers	621
33.4	The Atomic Nucleus and	
	the Strong Force	622
33.5	Radioactive Half-Life	625
33.6	Radiation Detectors	626
33.7	Transmutation of Elements	628
	Natural Transmutation	628
	Artificial Transmutation	630
33.8	Radiometric Dating	630
	FOOD IRRADIATION	632

Nuclear Fission and Fusion 637

34.1	Nuclear Fission	639
34.2	Nuclear Fission Reactors	641
	PLUTONIUM	643
34.3	The Breeder Reactor	644
34.4	Fission Power	644
34.5	Mass–Energy Equivalence	645
	PHy SICS AT AIRPORT SECURITY	649
34.6	Nuclear Fusion	649
34.7	Controlling Fusion	652

part eight Relativity

Special Theory of Relativity 658

35.1	Motion Is Relative	659
	Michelson–Morley Experiment	660
35.2	Postulates of the Special	
	Theory of Relativity	661
35.3	Simultaneity	662
35.4	Spacetime and Time Dilation	663

A01_HEWI9107_12_SE_FM.indd 13

۲

CONTENTS **XIII**

701

		TROLLEy CAR RIDE	667
		The Twin Trip	668
	35.5	Addition of Velocities	673
		Space Travel	674
		CENTURy H OPPING	675
	35.6	Length Contraction	675
	35.7	Relativistic Momentum	677
	35.8	Mass, Energy, and $E = mc^2$	678
	35.9	The Correspondence Principle	680
36	Ge	neral Theory of Relativity	686
	36.1	Principle of Equivalence	687
	36.1 36.2		687 689
	36.2	± ±	
	36.2	Bending of Light by Gravity	
	36.2 36.3	Bending of Light by Gravity Gravity and Time: Gravitational	689
	36.2 36.3	Bending of Light by Gravity Gravity and Time: Gravitational Red Shift	689
	36.2 36.3 36.4	Bending of Light by Gravity Gravity and Time: Gravitational Red Shift Gravity and Space: Motion	689 691
	36.2 36.3 36.4	Bending of Light by Gravity Gravity and Time: Gravitational Red Shift Gravity and Space: Motion of Mercury	689 691
	36.2 36.3 36.4 36.5	Bending of Light by Gravity Gravity and Time: Gravitational Red Shift Gravity and Space: Motion of Mercury Gravity, Space, and	68 69 69

CLOCKWATCHING ON A

30.0	Gravitational waves
36.7	Newtonian and Einsteinian
	Gravitation

APPENDIX A	
On Measurement and	
Unit Conversions	703
APPENDIX B	
More About Motion	709
APPENDIX C	712
Graphing	713
APPENDIX D	
Vector Applications	717
11	
APPENDIX E	
Exponential Growth	
and -Doubling Time	721
odd numbered answers	S-1
oud numbered answers	5-1
Glossary	G-1
Credits	C-1
Creatis	C-1
Index	I-1

۲

697

۲

Epilogue

The Conceptual Physics Photo Album

onceptual Physics is a v ery personal book, reflected in its many photographs of family and friends, who overlap with colleagues and friends worldwide. Many of these people are identified in chapter-opening photos, and with some exceptions I'll not repeat their names here. Family and friends whose photos are Part Openers, however, are listed here. We begin on page 1, where great-nephew Evan Suchocki (pronounced "su-hock-ee" with a silent c) holds a pet chickie on my lap.

Part One opens on page 19 with Charlotte Ackerman, the daughter of friends Duane Ackerman and Ellen Hum. Part Two opens with Andrea Wu (also on pages 131 and 492), daughter of my friend in Hawaii, Chiu Man Wu (page 322). Part Three opens on page 244 with four-year-old Francesco Ming Giovannuzzi from Florence, I taly, g randson of f riends K eith a nd T sing B ardin (page 244). P art Four on p age 355 shows A bby Dijamco, d aughter of m y l ast C CSF t eaching assistant, dentist Stella Dijamco. In Part Five, on page 405, is my granddaughter Megan, daughter of Leslie and B ob Abrams. Part Six, page 485, opens with Lillian's nephew, Christopher Lee. Part Seven, page 452, shows William Davis, son of friends Alan and Fe Davis. My granddaughter Grace Hewitt begins Part Eight on page 657.

City College of San Francisco friends and colleagues open several chapters and are named there. Photos that are figures include Will Maynez, the designer and builder of the air track displayed on page 100, and again burning a peanut on page 298. Diana Lininger Markham is shown on pages 29 and 159. Fred Cauthen drops balls on page 127.

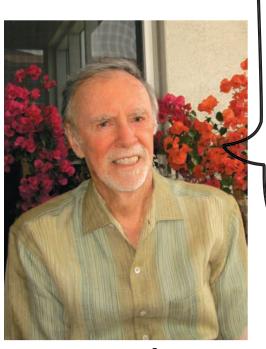
Physics i nstructor f riends f rom o ther c olleges a nd u niversities i nclude E van Jones playing with Bernoulli on page 264 and showing LED lighting on page 573. Egypt's Mona El Tawil-Nassar adjusts capacitor plates on page 423. Sanjay Rebello from Kansas State University, Manhattan, is shown on page 138. Hawaii's Walter Steiger is on page 588. Chuck Stone of Colorado School of Mines, Golden, shows an energy ramp on page 185.

Physics h igh s chool t eacher f riends i nclude r etired M arshall E llenstein, w ho swings the water-filled bucket on page 146 and walks barefoot on broken glass on pages 263 and 544. Other physics teachers from Illinois are Ann Brandon, riding on a cushion of air on page 268, and Tom Senior, making music on page 403.

Family photos begin with wife Lillian and me, showing that you cannot touch without being touched on page 81. A nother updated photo that links touching to Newton's third law shows my brother Stephen with his daughter Gretchen on page 87. Stephen's son Travis is on page 154, and his oldest daughter Stephanie on pages 230 and 543. My son Paul is shown on pages 305 and 340. Daughter-in-law

Ludmila Hewitt holds crossed Polaroids on page 556. The endearing girl on page 215 is my daughter Leslie Abrams, earth-science coauthor of the Conceptual Physical Science textbooks. This colorized photo of Leslie has been a trademark of Conceptual Physics since the Third Edition. A more recent photo with her husband Bob is on page 486. Their children, Megan and Emily (page 554), a long with son Paul's children, Alex (page 90) and Grace (page 391), make up the colorful set of photos on page 510. Photos of my late son James are on pages 150, 394, and 536. He left m e m y first grandson, M anuel, s een o n p ages 234 a nd 383. Manuel's grandmom, my wife Millie, who passed away in 2004, bravely holds her hand above the active pressure cooker on page 306. Brother David and his wife Barbara demonstrate atmospheric pressure on page 269. Their son also David, an electrician, is on page 445, and grandson John Perry Hewitt is on page 276. Sister Marjorie Hewitt Suchocki, author and emeritus theologian at Claremont School of Theology, illustrates reflection on page 522. Marjorie's son, John Suchocki, author of Conceptual Chemistry, Fifth Edition, and chemistry coauthor of the Conceptual *Physical Science* textbooks, is also a singer-songwriter, known as John Andrew; he strums his guitar on page 472. The group listening to music on page 399 is part of John's and Tracy's wedding party: from left to right, late Butch Orr, niece Cathy Candler (page 136 and her son Garth Orr on page 226), bride and groom, niece Joan Lucas (page 39), sister Marjorie, Tracy's parents Sharon and David Hopwood, teachers Kellie Dippel and Mark Werkmeister, and me.

Photos of Lillian's family include her dad (my father-in-law) Wai Tsan Lee, showing magnetic induction on page 457, and her mom (my mother-in-law), Siu Bik Lee, making good use of solar power on page 315. My nephew and niece, Erik and Allison Wong, dramatically illustrate thermodynamics on page 346.


Personal friends who were my former students begin with Tenny Lim, a rocket engineer at the Jet Propulsion Lab in Pasadena, drawing her bow on page 115. This photo h as appeared in every book since the Sixth E dition. She is seen with her husband Mark Clark on Segways on page 144. Another of my protégés is rocketscientist Helen yan, who is involved in satellite imaging sensoring for Lockheed Martin in Sunnyvale, in a ddition to teaching physics part-time at CCSF (page 121), and again posing with Richard Feynman and Marshall Ellenstein on page 544. On page 150 Cliff Braun is at the far left of my son James in Figure 8.50, with nephew Robert Baruffaldi at the far right. Alexei Cogan demonstrates the center of gravity on page 143, and the karate gal on page 85 is Cassy Cosme.

Three dear friends from school days are Howard Brand on page 90, Dan Johnson on page 336, and his wife Sue on page 39 (the first rower in the racing shell). Dan and Sue Johnson's grandson Bay plays the piano on page 396. Other cherished friends are Ryan Patterson, resonating on page 383, and Paul Ryan, who drags his finger through molten lead on page 331. My science influence from the sign-painting days is Burl Grey, shown on page 30 (with a sample sign-painting discussion on page 27), and Jacques Fresco is on page 133. Dear friend Dennis McNelis is eating pizza on page 309. Larry and Tammy Tunison wear radiation badges on page 582 (Tammy's dogs are on page 320). Greta Novak floats on very dense water on page 263, and her son Bruce Novak displays two versions of the color spectrum on page 489. Duane Ackerman's daughter Emily looks through novel lenses on page 537. Peter Rae of Arbor Scientific is on page 187. Paul Stokstad of PASCO is shown on page 132, and David and Christine Venier are on page 109.

The inclusion of these people who are so dear to me makes *Conceptual Physics* all the more my labor of love.

To the Student

You know you can't enjoy a game unless you know its rules; whether it's a ball game, a computer game, or simply a party game. Likewise, you can't fully appreciate your surroundings until you understand the rules of nature. Physics is the study of these rules, which show how everything in nature is beautifully connected. So the main reason to study physics is to enhance the way you see the physical world. You'll see the mathematical structure of physics in frequent equations, but more than being recipes for computation, you'll see the equations as **guides to thinking**.

TRUCHONT

I enjoy physics, and you will too — because you'll understand it. So go for comprehension of concepts as you read this book, and if more computation is on your menu, check out *Problem Solving in Conceptual Physics*, the ancillary book by Phil Wolf and me. Your understanding of physics should soar. Enjoy your physics!

xvi

To the Instructor

he sequence of chapters in this Twelfth Edition is identical to that in the previous edition. New to this edition are expanded personality profiles at the beginning of every chapter, highlighting a s cientist, t eacher, or historical figure who complements the chapter material. Each chapter begins with a photo montage of educators, and sometimes their children, who bring life to the learning of physics.

As in the previous edition, Chapter 1, "About Science," begins your course on a high note with coverage of early measurements of the Earth and distances to the Moon and the Sun. It is hoped that the striking photos of wife Lillian surrounded by spots of light on the sidewalk beneath a tall tree will prompt one of my favorite projects that has students investigating the round spot cast by a s mall hole in a card held in sunlight—and then going further to show that simple measurements lead to finding the Sun's diameter. This project extends to the *Practice Book* and the *Lab Manual*.

Part One, "Mechanics," begins with Chapter 2, which, as in the previous edition, presents a brief historical overview of Aristotle and Galileo, progressing to Newton's first law and to mechanical equilibrium. Force vectors are introduced, primarily for forces that are parallel to one another. Continuation of the discussion of vectors and their components awaits Chapter 5. The high tone of Chapter 1 is maintained as simple force vectors are treated before the concepts of velocity and acceleration. Students enter a comfortable part of physics before being introduced to kinematics.

Chapter 3, "Linear Motion," is the only chapter in Part One that is devoid of physics laws. Kinematics has no laws, only definitions, mainly for *speed*, *velocity*, and *acceleration*—likely the least exciting concepts that your course has to offer. Too o ften k inematics b ecomes a p edagogical " black h ole" of i nstruction—too much time for too little physics. Being more math than physics, the k inematics equations can appear to the student as the most intimidating in the book. Although the experienced eye doesn't see them as such, this is how *students* first see them:

If you wish to reduce class size, display these equations on the first day and announce that class effort for much of the term will be on making sense of them. Don't we do much the same with the standard symbols?

Ask any college graduate two questions: What is the acceleration of an object in free fall? What keeps Earth's interior hot? you'll see what their education focused on because many more will correctly answer the first question than the second. Traditionally, physics courses have been top-heavy in kinematics with little or no coverage of modern physics. Radioactive decay almost never gets the attention given to falling bodies. So my recommendation is to pass quickly through Chapter 3,

making the distinction between velocity and acceleration, and then to move on to Chapter 4, "Newton's Second Law of Motion," where the concepts of velocity and acceleration find their application.

Chapter 5 continues with Newton's third law. The end of the chapter treats the parallelogram rule for combining vectors—first force vectors and then velocity vectors. It also introduces vector components. More on vectors is found in Appendix D and especially in the *Practice Book*.

Chapter 6, "Momentum," is a l ogical extension of N ewton's third law. O ne reason I p refer teaching it before teaching energy is that students find mv much simpler and easier to grasp than $\frac{1}{2}mv^2$. A nother reason for treating momentum first is that the vectors of the previous chapter are employed with momentum but not with energy.

Chapter 7, "Energy," is a longer chapter, rich with everyday examples and current energy concerns. Energy is central to mechanics, so this chapter has the greatest amount of chapter-end material (80 exercises). Work, energy, and power also get generous coverage in the *Practice Book*.

After Chapters 8 and 9 (on rotational mechanics and gravity), mechanics culminates with Chapter 10 (on projectile motion and satellite motion). Students are fascinated to learn that any projectile moving fast enough can become an Earth satellite. Moving even faster, it can become a satellite of the Sun. Projectile motion and satellite motion belong together.

Part Two, "Properties of Matter," features chapters on atoms, solids, liquids, and gases, which are much the same as the previous edition. New applications, some quite enchanting, enhance the flavor of these chapters.

Parts T hree t hrough E ight c ontinue, like e arlier p arts, with e nriched e xamples of current technology. New lighting with CFLs and LEDs in Chapter 23 has added treatment in Chapter 30. The chapters with the fewest changes are Chapters 35 and 36 on special and general relativity, respectively.

At the end of each of the eight parts is a **Practice Exam**, most featuring 30 multiple-choice questions. Answers appear at the end of the book. New to this edition, odd-numbered answers and solutions to *all* chapter-end material are given at the end of the book.

As in previous editions, some chapters include short boxed essays on such topics as energy and technology, railroad train wheels, magnetic strips on credit cards, and magnetically levitated trains. Also featured are boxes on pseudoscience, culminating with the public phobia about food irradiation and anything nuclear. To the person who works in the arena of science, who knows about the care, checking, and cross-checking that go into understanding something, pseudoscientific misconceptions are laughable. But to those who don't work in the science arena, including even your best students, pseudoscience can seem compelling when purveyors clothe their wares in the language of science while skillfully sidestepping the tenets of science. Our hope is to help stem this rising tide.

End-of-chapter m aterial b egins w ith a **Summary of Terms**. F ollowing a re **Reading Check Questions** that summarize the main points of the chapter. Students can find the answers to these questions, word for word, in the reading. The answers and the solutions to **Plug and Chug** exercises, as well as solutions to all chapter-end material, as said, are new to this edition. As introduced in the previous edition, many good comments have come from the **Think and Rank** exercises. Critical thinking is required in comparing quantities in similar situations. Getting an answer is not enough; the answer must be compared with others and a ranking from most to least is asked for. I consider this the most worthwhile offering in the chapter-end material.

Think and Explain exercises are the nuts and bolts of conceptual physics. Many require critical thinking, while some are designed to connect concepts to familiar

situations. Most chapters have from 50 to 60 of them, separated into **Think and Discuss** sections (which are tailored for student discussion). More math-physics challenges are found in the sets of **Think and Solve** exercises. These problems are much less numerous than Think and Explains and Think and Ranks. Many more problems are available in the student supplement, **Problem Solving in Conceptual Physics**, coauthored with Phil Wolf. While problem solving is not the main thrust of a conceptual course, Phil and I, like most physics instructors, nevertheless love solving problems. In a n ovel and student-friendly way, our supplement features problems that are more physics than math, nicely extending *Conceptual Physics*—even to courses that feature problem solving. We think that many professors will enjoy the options offered by this student supplement to the textbook. Problem solutions are included in the Instructor Resources area of MasteringPhysics.

The most important ancillary to this book is the **Practicing Physics Book**, which contains my most creative writings and drawings. These work pages guide students step by step toward understanding the central concepts. There are one or more practice pages for nearly every chapter in the book. They can be used inside or outside of class. In my teaching I passed out copies of selected pages as home tutors.

The **Laboratory Manual** coauthored with Dean Baird that accompanies this edition provides a great variety of activities and lab exercises. The polishing that Dean gives this material is extraordinary.

Next-Time Questions, familiar to readers of *The Physics Teacher* as *Figuring Physics*, a re a vailable e lectronically a nd a re m ore n umerous t han e ver b efore. When s haring t hese with y our classes, p lease d o n ot s how t he question(s) a nd the answer(s). Allow sufficient "wait time" between the question and the answer for your students to discuss the answer before showing it "next time" (which at a minimum should be the next class meeting, or even next week). Thus the title named appropriately "Next-Time Questions." More learning occurs when students ponder answers before being given them. Next-Time Questions are included on the Instructor Resource DVD (IRDVD). They are also available at the Arborsci. com website.

The **Instructor Manual** for the textbook and *Laboratory Manual*, like previous ones, features demonstrations and suggested lectures for every chapter. It includes answers to the end-of-chapter material as cited above. If you're new to teaching this course, you'll likely find it enormously useful. It sums up "what works" in my more than 30 years of teaching.

The **Instructor Resource DVD** provides a wealth of presentation tools to help support your instruction. In a word, it is *sensational*! It includes "everything you could ask for: as a teaching resource," including lecture outlines for each chapter in PowerPoint and chapter-by-chapter weekly in-class quizzes in PowerPoint for use with Classroom Response Systems (easy-to-use wireless polling systems that allow you to pose questions in class, have each student vote, and then display the results in real time). The IRDVD also provides all the art and photos from the book (in high-resolution jpeg format), the Test Bank, Next-Time Questions, and the Instructor Manual in editable Word format.

Last but not least is MasteringPhysics. . . .

All of these innovative, targeted, and effective online learning media are easily integrated into your course using an online gradebook (to "assign" the tutorials, quizzes, and other activities as out-of-class homework or projects that are automatically graded and recorded), simple icons throughout the text (highlighted key tutorials, interactive figures, and other online resources), and the Instructor Resource DVD. A chapter guide section on Mastering summarizes the media available to you and your students, chapter by chapter.

For more information on the support ancillaries, see http://www.pearsonhighered.com/physics, contact your Pearson representative, or contact me at pghewitt@aol.com.

New Features in This Edition

The greatest addition to this edition is the **Hewitt-drew-it screencasts** (more than 130) that have been featured on youTube since 2012. QR codes throughout the book link the student to these tutorial lessons that have been created by me and polished by my wife. I feel that these lessons are my most recent and important contribution to making physics correct and understandable. They nicely complement the chapter material of this edition. Simply scan the QR codes in the book with your smartphone or tablet. First, download a QR code reader. you can download free apps from your app store or use a built-in code reader if your device has one. Next, scan the code using the QR code reader. you will be able to view the Hewitt-drew-it screencasts online. (Note: Data usage charges may apply.)

The profiles of physicists and physics educators in the previous edition are still included, with new people added throughout. By learning more about the people behind the chapter content, the reader gets a more personalized flavor of physics.

More on force and velocity vectors is in this edition and more on climate change. New updates to current-day physics are found throughout the book New boxes include 3-D printing, GPS operation, and the Higgs boson.

The chapter-end material has been reorganized, with consecutive numbering to assist in making assignments.

I regard this as the best physics book I have ever written.

Acknowledgments

remain enormously grateful to Kenneth Ford for checking accuracy and for his many insightful suggestions. Many years ago, I admired one of Ken's books, *Basic Physics*, which first inspired me to write *Conceptual Physics*. Today I am honored that he has devoted so much of his time and energy to making this edition a beautiful book. Errors invariably appear after manuscript is submitted, so I take full responsibility for any errors that have survived his scrutiny.

For insightful additions I thank my wife Lillian, Bruce Novak, Marshall Ellenstein, and Evan Jones. I appreciate the suggestions of Tomas Brage, J. Ronald Galli, John Hubisz, David Kagan, Sebastian Kuhn, Carlton Lane, Anne Tabor-Morris, Derek Muller, Fred Myers, Chris Thron, Jeff Wethehold, and P. O. Zetterberg.

For valued suggestions from previous editions, I thank my friends Dean Baird, Howard Brand, George Curtis, Alan Davis, Marshall Ellenstein, Mona El Tawil-Nassar, Herb Gottlieb, Jim Hicks, Peter Hopkinson, John Hubisz, Dan Johnson, David K agan, J uliet L ayugan, P aul M cNamara, F red M yers, D iane R iendeau, Chuck Stone, Lawrence Weinstein, and Phil Wolf. Others who provided suggestions in years past include Matthew Griffiths, Paul Hammer, Francisco Izaguirre, Les Sawyer, Dan Sulke, and Richard W. Tarara. I am forever grateful to the input of my E xploratorium friends a nd c olleagues: J udith B rand, Paul D oherty, R on Hipschman, Eric Muller, and Modesto Tamez.

I remain g rateful to the a uthors of b ooks t hat i nitially s erved a s i nfluences and references m any y ears a go: Theodore A shford, *From Atoms to Star*; A lbert Baez, *The New College Physics: A S piral Approach*; John N. Cooper and Alpheus W. S mith, *Elements of P hysics*; R ichard P. Feynman, *The F eynman L ectures o n Physics*; Kenneth Ford, *Basic Physics*; Eric Rogers, *Physics for the Inquiring Mind*; Alexander T affel, *Physics: I ts M ethods a nd M eanings*; U NESCO, *700 S cience Experiments for Everyone*; and Harvey E. White, *Descriptive College Physics*.

I remain thankful to Robert Park, whose book *Voodoo Science* motivated me to include boxes on pseudoscience.

For the *Problem Solving in Conceptual Physics* ancillary, coauthored with Phil Wolf, we both thank Tsing Bardin, Howard Brand, George Curtis, Ken Ford, Herb Gottlieb, Jim Hicks, David Housden, Evan Jones, Chelcie Liu, Fred Myers, Diane Riendeau, Stan Schiocchio, John Sperry, and David Williamson for valuable feedback.

I am particularly grateful to my wife, Lillian Lee Hewitt, for new photos and assistance in all phases of book-and-ancillary preparation. I'm grateful to my niece Gretchen Hewitt Rojas for photo assistance. My greatest appreciation goes to Ken Ford and Bruce Novak, who gave particular attention to this edition. Bringing Bruce on board was very, very fortunate.

For their dedication, I am grateful to the staff at Addison-Wesley in San Francisco. I a m e specially t hankful t o J im S mith, e ditor-in-chief, a nd C handrika Madhavan, project editor. I thank Cindy Johnson, project manager, Carol Reitz, copyeditor, a nd t he p roduction staff at C enveo P ublisher S ervices for t heir p atience with my last-minute editing and revising or fine-tuning requests. I've been blessed with a first-rate team!

> Paul G. Hewitt St. Petersburg, Florida